Dual Systems of algebraic iterated function systems, Rauzy fractals and β-tilings

نویسندگان

  • Shunji Ito
  • Hui Rao
چکیده

Algebraic GIFS is a class of graph-directed iterated function systems (IFS) on R with algebraic parameters. A dual IFS of an algebraic GIFS can be constructed, and the duality between the two systems and has been investigated from various points of view. We review the results of dual IFS concerning the open set condition, purely periodic codings and the Rauzy-Thurston tilings, and their relation with previous studies. Either a substitution or a numeration system can define an algebraic IFS in a natural way, and both Rauzy fractals and β-tilings can be obtained as dual IFS. The dual IFS provides a unified and simple framework for the theory of Rauzy fractals, β-tilings and related studies. §

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5 Substitutions , Rauzy fractals and tilings

This chapter focuses on multiple tilings associated with substitutive dynamical systems. We recall that a substitutive dynamical system (Xσ, S) is a symbolic dynamical system where the shift S acts on the set Xσ of infinite words having the same language as a given infinite word which is generated by powers of a primitive substitution σ. We restrict to the case where the inflation factor of the...

متن کامل

Decidability Problems for Self-induced Systems Generated by a Substitution

In this talk we will survey several decidability and undecidability results on topological properties of self-affine or self-similar fractal tiles. Such tiles are obtained as fixed point of set equations governed by a graph. The study of their topological properties is known to be complex in general: we will illustrate this by undecidability results on tiles generated by multitape automata. In ...

متن کامل

Fractal tiles associated with shift radix systems☆

Shift radix systems form a collection of dynamical systems depending on a parameter r which varies in the d-dimensional real vector space. They generalize well-known numeration systems such as beta-expansions, expansions with respect to rational bases, and canonical number systems. Beta-numeration and canonical number systems are known to be intimately related to fractal shapes, such as the cla...

متن کامل

Rotation number and its properties for iterated function and non-autonomous systems  

The main purpose of this paper is to introduce the rotation number for non-autonomous and iterated function systems. First, we define iterated function systems and the lift of these types of systems on the unit circle. In the following, we define the rotation number and investigate the conditions of existence and uniqueness of this number for our systems. Then, the notions rotational entropy an...

متن کامل

Fractals as Fixed Points of Iterated Function Systems

This paper discusses one method of producing fractals, namely that of iterated function systems. We first establish the tools of Hausdorff measure and Hausdorff dimension to analyze fractals, as well as some concepts in the theory of metric spaces. The latter allows us to prove the existence and uniqueness of fractals as fixed points of iterated function systems. We discuss the connection betwe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014